Part Number Hot Search : 
50100 4C04W 0X13X GBU10005 2N519100 74LVC1G 76129D PIC16F
Product Description
Full Text Search
 

To Download HUF75945P3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HUF75945G3, HUF75945P3, HUF75945S3ST
Data Sheet December 2001
38A, 200V, 0.071 Ohm, N-Channel, UltraFET(R) Power MOSFETs Packaging
JEDEC TO-247
SOURCE DRAIN GATE
Features
* Ultra Low On-Resistance - rDS(ON) = 0.071, VGS = 10V * Simulation Models - Temperature Compensated PSPICE(R) and SABERTM Electrical Models - Spice and SABER Thermal Impedance Models - www.fairchildsemi.com * Peak Current vs Pulse Width Curve * UIS Rating Curve
DRAIN (TAB)
JEDEC TO-220AB
SOURCE DRAIN GATE
JEDEC TO-263AB
DRAIN (FLANGE)
GATE DRAIN (FLANGE) SOURCE
Ordering Information
PART NUMBER HUF75945G3 PACKAGE TO-247 TO-220AB TO-263AB BRAND 75945G 75945P 75945S
Symbol
D
HUF75945P3 HUF75945S3ST
NOTE: When ordering, use the entire part number.
G
S
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified HUF75945G3,HUF75945P3, HUF75945S3ST UNITS V V V A A
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES: 1. TJ = 25oC to 150oC.
200 200 20 38 27 Figure 4 Figures 6, 14, 15 310 2.07 -55 to 175 300 260
W W/oC
oC oC oC
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
(c)2001 Fairchild Semiconductor Corporation
HUF75945G3, HUF75945P3, HUF75945S3ST Rev. B
HUF75945G3, HUF75945P3, HUF75945S3ST
Electrical Specifications
PARAMETER OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS ID = 250A, VGS = 0V (Figure 11) VDS = 190V, VGS = 0V VDS = 180V, VGS = 0V, TC = 150oC Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient RJC RJA TO-247, TO-220, TO-263 TO-247 TO-220, TO-263 0.48 30 62
oC/W oC/W oC/W
TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
200 -
-
1 250 100
V A A nA
IGSS
VGS = 20V
VGS(TH) rDS(ON)
VGS = VDS, ID = 250A (Figure 10) ID = 38A, VGS = 10V (Figure 9)
2 -
0.056
4 0.071
V 3/4
SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 10V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) 4023 880 240 pF pF pF Qg(TOT) Qg(10) Qg(TH) Qgs Qgd VGS = 0V to 20V VGS = 0V to 10V VGS = 0V to 2V VDD = 100V, ID = 38A, Ig(REF) = 1.0mA (Figures 13, 16, 17) 215 118 8 15 42 280 153 10 nC nC nC nC nC tON td(ON) tr td(OFF) tf tOFF VDD = 100V, ID = 38A VGS = 10V, RGS = 3.0 (Figures 18, 19) 15 64 65 80 33 217 ns ns ns ns ns ns
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage SYMBOL VSD ISD = 38A ISD = 19A Reverse Recovery Time Reverse Recovered Charge trr QRR ISD = 38A, dISD/dt = 100A/s ISD = 38A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 1.00 281 2700 UNITS V V ns nC
(c)2001 Fairchild Semiconductor Corporation
HUF75945G3, HUF75945P3, HUF75945S3ST Rev. B
HUF75945G3, HUF75945P3, HUF75945S3ST Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 30 VGS = 10V 20 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) 40
10
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01
0.1 PDM NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100
SINGLE PULSE 0.01 10-5 10-4
t1 t2 101
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
1000
IDM , PEAK CURRENT (A)
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 175 - TC 150 VGS = 10V
100
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101
FIGURE 4. PEAK CURRENT CAPABILITY
(c)2001 Fairchild Semiconductor Corporation
HUF75945G3, HUF75945P3, HUF75945S3ST Rev. B
HUF75945G3, HUF75945P3, HUF75945S3ST Typical Performance Curves
500 SINGLE PULSE TJ = MAX RATED TC = 25oC 100 IAS , AVALANCHE CURRENT (A) 100
(Continued)
200
ID, DRAIN CURRENT (A)
STARTING TJ = 150oC 10
STARTING TJ = 25oC
100s 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1ms 10ms 1 1 10 100 500 VDS , DRAIN TO SOURCE VOLTAGE (V)
If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 1 0.001 0.01 0.1 1 10
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
75 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V 50 ID, DRAIN CURRENT (A)
75 VGS = 10V VGS = 5V 50 VGS = 4.5V
ID, DRAIN CURRENT (A)
25 TJ = 175oC TJ = -55oC TJ = 25oC 0 2 3 4 5 VGS , GATE TO SOURCE VOLTAGE (V)
25 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 0 0 1 2 3 4 5 6 VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. SATURATION CHARACTERISTICS
3.5 NORMALIZED DRAIN TO SOURCE ON RESISTANCE 3.0 2.5 2.0 1.5 1.0 0.5 VGS = 10V, ID = 38A 0 -80 -40 0 40 80 120 160 200 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX NORMALIZED GATE THRESHOLD VOLTAGE
1.2 VGS = VDS, ID = 250A 1.0
0.8
0.6
0.4 -80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
(c)2001 Fairchild Semiconductor Corporation
HUF75945G3, HUF75945P3, HUF75945S3ST Rev. B
HUF75945G3, HUF75945P3, HUF75945S3ST Typical Performance Curves
1.3 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250A
(Continued)
10000 VGS = 0V, f = 1MHz C, CAPACITANCE (pF) CISS = CGS + CGD 1000 COSS CDS + CGD
1.2
1.1
1.0
100
CRSS = CGD
0.9 -80
-40
0
40
80
120
160
200
30 0.1
1.0
10
100 200
TJ , JUNCTION TEMPERATURE (oC)
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 100V 8
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
6
4 WAVEFORMS IN DESCENDING ORDER: ID = 38A ID = 10A 0 20 40 60 80 100 120
2
0
Qg, GATE CHARGE (nC)
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
-
0V
IAS 0.01
0 tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
(c)2001 Fairchild Semiconductor Corporation
HUF75945G3, HUF75945P3, HUF75945S3ST Rev. B
HUF75945G3, HUF75945P3, HUF75945S3ST Test Circuits and Waveforms
(Continued)
VDS RL VDD VDS VGS = 20V VGS
+
Qg(TOT)
Qg(10) VDD VGS VGS = 2V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 10V
DUT Ig(REF)
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORMS
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
DUT RGS
VDD 0
10% 90%
10%
VGS VGS 0 10%
50% PULSE WIDTH
50%
FIGURE 18. SWITCHING TIME TEST CIRCUIT
FIGURE 19. SWITCHING TIME WAVEFORM
(c)2001 Fairchild Semiconductor Corporation
HUF75945G3, HUF75945P3, HUF75945S3ST Rev. B
HUF75945G3, HUF75945P3, HUF75945S3ST PSPICE Electrical Model
.SUBCKT HUF75945 2 1 3 ;
CA 12 8 6.6e-9 CB 15 14 6.5e-9 CIN 6 8 3.80e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
10
rev 13 October 2000
LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + EBREAK MWEAK MMED MSTRO CIN LSOURCE 8 RSOURCE RLSOURCE S1A 12 S1B CA 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 14 IT 15 17 RBREAK 18 RVTEMP 19 7 SOURCE 3 17 18 DBODY DRAIN 2 RSLC1 51 ESLC 50
RSLC2
5 51
ESG 6 8 + LGATE GATE 1 RLGATE EVTEMP RGATE + 18 22 9 20 EVTHRES + 19 8 6
IT 8 17 1 LDRAIN 2 5 1.0e-9 LGATE 1 9 8.05e-9 LSOURCE 3 7 5.8e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 5.0e-2 RGATE 9 20 0.77 RLDRAIN 2 5 10 RLGATE 1 9 80.5 RLSOURCE 3 7 58 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 1.8e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*100),2.5))} .MODEL DBODYMOD D (IS = 2.8e-12 RS = 3.0e-3 XTI = 5.5 TRS1 = 3.5e-3 TRS2 = 1e-5 CJO = 2.55e-9 TT = 1.52e-7 M = 0.42) .MODEL DBREAKMOD D (RS = 1.2e- 0TRS1 = 1e- 3TRS2 = 1e-6) .MODEL DPLCAPMOD D (CJO = 4.6e- 9IS = 1e-30 N = 10 M = 0.9) .MODEL MMEDMOD NMOS (VTO = 3.05 KP = 2.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.77) .MODEL MSTROMOD NMOS (VTO = 3.55 KP = 100 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.69 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 7.70 ) .MODEL RBREAKMOD RES (TC1 =1.27e- 3TC2 = 1.0e-6) .MODEL RDRAINMOD RES (TC1 = 9.90e-3 TC2 = 3.60e-5) .MODEL RSLCMOD RES (TC1 = 3.0e-3 TC2 = 1.0e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2.90e-3 TC2 = -1.10e-5) .MODEL RVTEMPMOD RES (TC1 = -2.80e- 3TC2 = 1.70e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5.5 VOFF= -4.5) VON = -4.5 VOFF= -5.5) VON = -0.3 VOFF= 0.4) VON = 0.4 VOFF= -0.3)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
(c)2001 Fairchild Semiconductor Corporation
+
-
EBREAK 11 7 17 18 221 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
RDRAIN 21 16
-
VBAT +
8 22 RVTHRES
HUF75945G3, HUF75945P3, HUF75945S3ST Rev. B
HUF75945G3, HUF75945P3, HUF75945S3ST SABER Electrical Model
REV 13 October 2000 template huf75945 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 2.8e-12, rs = 3.0e-3, xti = 5.5, trs1 = 3.5e-3, trs2 = 1.0e-5, cjo = 2.55e-9, tt = 1.52e-7, m = 0.42) dp..model dbreakmod = (rs = 1.2, trs1 = 1.0e-3, trs2 = 1.0e-6) dp..model dplcapmod = (cjo = 4.6e-9, isl = 10e-30, nl=10, m = 0.9) m..model mmedmod = (type=_n, vto = 3.05, kp = 2.5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.55, kp = 100, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.69, kp = 0.05, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.5, voff = -4.5) DPLCAP 5 sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -4.5, voff = -5.5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.4) 10 sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.4, voff = -0.3) c.ca n12 n8 = 6.6e-9 c.cb n15 n14 = 6.5e-9 c.cin n6 n8 = 3.8e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1.00e-9 l.lgate n1 n9 = 8.05e-9 l.lsource n3 n7 = 5.80e-9
GATE 1 RLGATE CIN LGATE RSLC1 51 RSLC2 ISCL
LDRAIN DRAIN 2 RLDRAIN
ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8
50 RDRAIN 21 16
DBREAK 11 DBODY MWEAK MMED EBREAK + 17 18
MSTRO 8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1.27e-3, tc2 = 1.00e-6 res.rdrain n50 n16 = 5.0e-2, tc1 = 9.9e-3, tc2 =3.6e-5 res.rgate n9 n20 = 0.77 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 80.5 res.rlsource n3 n7 = 58 res.rslc1 n5 n51= 1e-6, tc1 = 3e-3, tc2 = -1.0e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.8e-3, tc1 = 1.0e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -2.8e-3, tc2 = 1.70e-6 res.rvthres n22 n8 = 1, tc1 = -2.9e-3, tc2 = 1.1e-5 spe.ebreak n11 n7 n17 n18 = 221 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6*100))** 2.5)) } }
S1A 12 S1B CA 13 + EGS 6 8 13 8 S2A 14 13 S2B
RSOURCE
LSOURCE 7 RLSOURCE
SOURCE 3
15
RBREAK 17 18 RVTEMP
CB + EDS 5 8
19 14 IT
VBAT +
-
-
8 RVTHRES
22
(c)2001 Fairchild Semiconductor Corporation
HUF75945G3, HUF75945P3, HUF75945S3ST Rev. B
HUF75945G3, HUF75945P3, HUF75945S3ST SPICE Thermal Model
REV 13 October 2000 HUF75945T CTHERM1 th 6 6.45e-3 CTHERM2 6 5 3.00e-2 CTHERM3 5 4 1.40e-2 CTHERM4 4 3 1.65e-2 CTHERM5 3 2 4.85e-2 CTHERM6 2 tl 1.00e-1 RTHERM1 th 6 3.24e-3 RTHERM2 6 5 8.08e-3 RTHERM3 5 4 2.28e-2 RTHERM4 4 3 1.00e-1 RTHERM5 3 2 1.10e-1 RTHERM6 2 tl 1.40e-1
th JUNCTION
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model HUF75945T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 6.45e-3 ctherm.ctherm2 6 5 = 3.00e-2 ctherm.ctherm3 5 4 = 1.40e-2 ctherm.ctherm4 4 3 = 1.65e-2 ctherm.ctherm5 3 2 = 4.85e-2 ctherm.ctherm6 2 tl = 1.00e-1 rtherm.rtherm1 th 6 = 3.24e-3 rtherm.rtherm2 6 5 = 8.08e-3 rtherm.rtherm3 5 4 = 2.28e-2 rtherm.rtherm4 4 3 = 1.00e-1 rtherm.rtherm5 3 2 = 1.10e-1 rtherm.rtherm6 2 tl = 1.40e-1 }
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
(c)2001 Fairchild Semiconductor Corporation
HUF75945G3, HUF75945P3, HUF75945S3ST Rev. B
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E2CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM
DISCLAIMER
FAST (R) FASTrTM FRFETTM GlobalOptoisolatorTM GTOTM HiSeCTM ISOPLANARTM LittleFETTM MicroFETTM MicroPakTM MICROWIRETM
OPTOLOGICTM OPTOPLANARTM PACMANTM POPTM Power247TM PowerTrench (R) QFETTM QSTM QT OptoelectronicsTM Quiet SeriesTM SILENT SWITCHER (R)
SMART STARTTM STAR*POWERTM StealthTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogicTM TruTranslationTM UHCTM UltraFET (R)
VCXTM
STAR*POWER is used under license
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. H4


▲Up To Search▲   

 
Price & Availability of HUF75945P3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X